Innovative zero-emissions power plant begins battery of tests

May 30, 2018

A team of engineers in La Porte, Texas, has spent the past several weeks running tests on a prototype power plant that uses a stream of pure carbon dioxide — not air — to drive a turbine. If the zero-emission technology developed by NET Power in Durham, North Carolina, succeeds, it could help to usher in an era of clean power from fossil fuels.

The company broke ground on the roughly 25-megawatt plant in March 2016, after raising US$140 million for the project, and completed construction last year. It is now running a battery of tests on the combustor that powers the plant, a one-of-a-kind device built by the Japanese industrial giant Toshiba. If the tests go as planned, NET Power will hook up the turbine and begin generating electricity later this year.

Officials say everything is running smoothly so far. “We’re still smiling,” says chemical engineer Rodney Allam, the facility’s lead designer. Allam is now a partner with 8 Rivers, a technology company in Durham that co-owns NET Power with Exelon, a major electricity provider in Chicago, Illinois, and McDermott International, an energy-services company in Houston, Texas.

What separates the La Porte facility from a standard power plant is the CO2 cycle at its core. A conventional power plant burns fossil fuels to generate steam that drives a turbine — and it also emits CO2 as a byproduct.

By contrast, NET Power will drive its turbine with a loop of hot, pressurized CO2. The first step is to fill the system with CO2, which must then be heated in order to drive the turbine — much like a conventional power plant heats water to create steam.

The combustor then ignites a mixture of natural gas and oxygen, which is extracted from the atmosphere in a separate facility. This heats up the CO2 in the loop that drives the turbine, but it also produces additional CO2 that must be siphoned off to keep the system in balance...

Read entire article at Nature (International Journal of Science). 

<- Go Back